Integrated Use of IVUS and FFR for LM Stenting

Gary S. Mintz, MD Cardiovascular Research Foundation

Four studies have highlighted the inaccuracy of angiography in the assessment of LMCA disease

- Fisher et al. Cathet Cardiovasc Diagn 1982;8:565-75
- Cameron et al. Circulation 1983;68:484-489
- Lindstaedt et al. Int J Cardiol 2007;120:254-61
 - In 51 patients unanimous correct assessment of LM severity by 4 experienced interventional cardiologists was only 29%
- Hamilos et al. Circulation 2009;120:1505-12
 - In 209 patients two reviewers either disagreed whether the LM was significant or they agreed and were wrong in their assessment of LM severity in 49%

IVUS vs FFR in LMCA Disease

- There is more agreement between IVUS and FFR in assessing LMCA than in assessing non-LMCA lesions
 - Limited variability in (short) LMCA length
 - Limited variability in large LMCA size
 - Limited variability in amount of supplied myocardium
- Both have theoretical and practical limitations
 - FFR
 - Proximal LAD and/or LCX disease may affect FFR of LMCA
 - IVUS
 - Especially in distal LMCA lesions, it is necessary to image from both the LAD and LCX
 - It is not possible to assess the LCX from an LAD-to-LM pullback, and it is not possible to assess the LAD from an LCX-to-LM pullback

IVUS Determinants of LMCA FFR <0.75

Jasti et al. Circulation 2004;110:2831-6

IVUS determinants of LM FFR (n=47)

Independent predictors for FFR (continuous variable)

- MLA (β=0.58, 95% CI=0.02-0.04, p<0.001)
- Plaque rupture (β=-0.24, 95% Cl= -0.09-0.01, p=0.036)

Kang et al. JACC Cardiovasc Interv 2011;4:1168-74

	Men	Women				
South Korea	68.6 kg	56.5 kg				
US	88.3 kg	74.7 kg				

Heart weight correlates directly with body weight (r=0.8-0.9)

Kang et al. JACC Cardiovasc Interv 2011;4:1168-74 Yoon et al. Korean J Path 1999;33:1-8 Seo et al. J Korean Med Sci 2000;15:641-6

LMCA disease is rarely isolated (6-9%)

 An in vitro model suggests that positioning the FFR guidewire in the LCX will <u>not</u> accurately reflect the LMCA only <u>if</u> the composite FFR in the LMCA+LAD is ≤0.65.

 An in vivo ovine model suggests that an FFR in the uninvolved artery will not accurately reflect the LMCA only if the composite FFR in the LMCA+the involved artery is ≤0.50 and that an FFR >0.85 would indicate that the LMCA is not functionally significant.

Ragosta et al. Catheter Cardiovasc Interv 2006;67:357-72 Capodanno et al. JACC Cardiovasc Interv 2009;2:731-8 Daniels et al. JACC Cardiovasc Interv 2012;5:1021-5 Young et al. Circ Cardiovasc Interv 2013, in press

- In 25% of patients, MLA differs by 1mm² when imaged from a pullback beginning in the LAD vs the LCX.
- Since IVUS can artificially increase, but not decrease lumen dimensions, the smallest MLA is always the most accurate

Evaluation of the LAD from the LM-LCX pullback

Evaluation of the LCX from the LM-LAD pullback

Oviedo et al. Am J Cardiol 2010;105:948-54

IVUS plaque distribution in 140 distal LMCA bifurcation lesions

Oviedo et al. Circ Cardiovasc Interv. 2010;3:105-12

All lesions			
(n=80)			
Medina 1,1,1			
(n=21)			
Medina 1,1,0			
(<i>n</i> =9)			
Medina 1,0,1			
(<i>n</i> =6)			
Medina 0,1,1			
(n=11)			
Medina 1,0,0			
(n=7)	그는 방법에 가지 않는 것이 가지 않는 것이 같이 많은 것이 많이 많이 많이 했다.		
Medina 0,1,0			
(n=14)			
Medina 0,0,1			
(n=12)			
Medina 0,0,0			
(n =60)			
)%		100%
			10070

Oviedo et al. Circ Cardiovasc Interv. 2010;3:105-12

Outcomes in 136 pts with an FFR >0.8 managed medically vs 73 pts with an FFR <0.8 managed surgically

- A RCA stenosis was the sole independent predictor for MACE.
- MACE survival rates at 5 years in the medical and surgical groups were 70% and 66%, respectively, P=0.54.

Hamilos et al. Circulation 2009;120:1505-1512

Prospective application of predefined IVUS criteria for revascularization of intermediate LM lesions: Results at 2 years from the LITRO study

De La Torre Hernandez et al. J Am Coll Cardiol 2011;58:351-8

Clinical outcome of pts with vs without revascularization

Clinical outcome of pts without revascularization according to the MLA

In the group of 16 patients with MLA <6mm² who were treated medically, cardiac death-free survival to 2 years was 86% (97.7% in the deferred group; p=0.04), and survival free of cardiac death, MI, and revascularization was 62.5% (87.3% in the deferred group; p=0.02).

De La Torre Hernandez et al. J Am Coll Cardiol 2011;58:351-8

"Small" LM = Diffuse LMCA disease

- Murray's Law
 - $\square_{\text{LMCA}} \mathbf{r}^3 = _{\text{LAD}} \mathbf{r}^3 + _{\text{LCX}} \mathbf{r}^3$
- Fractal Geometry
 - $L_{MCA}D = 0.678 (_{LAD}D + _{LCX}D)$

QCA	A B D C E = 0,678 * (C+D)		T	A	K
	LMDref(A)	(mm)	4.80	2.69	4.09
	LMMLD (B)	(mm)	4.70	2.62	2.58
	Diameter Stenosis	(%)	2	3	37
	LADDref (C)	(mm)	3.93	3.32	3.72
	LCxDref (D)	(mm)	3.17	2.28	3.13
QCA	LMDfractal (E)	(mm)	4.81	3.80	4.64
	Diameter Stenosis fractal	(%)	2	31	44
Juctur	LMDref-LMDfractal	(mm)	-0,01	-1,11	-0,55
	LM MLA (F)	(mm²)	15.32	6.02	4.42
	LMML PB (G)	(%)	17	66	65
	LMMLEEM (H)	(mm²)	18.45	17.58	12.76
	LMDref	(mm)	4.44	2.88	4.09
	LMMLD	(mm)	4.42	2.77	2.37
	Diameter Stenosis	(%)	1	4	42
	LADDref	(mm)	3.95	3.70	3.73
	LCxDref	(mm)	3.04	2.60	2.94
QIVUS	LMDfractal	(mm)	4.74	4.27	4.52
	Diameter Stenosis fractal	(%)	7	35	48
	LMDref-LMDfractal	(mm)	-0.30	-1.39	-0.43

Matreff et al. Eurointervention 2010;5:709-15

Criteria for stent underexpansion at the distal LMCA bifurcation (n=403)

- MACE-free survival was lower in pts with underexpansion vs those without underexpansion (89.4% vs 98.1%)
- TLR-free survival was lower in pts with underexpansion vs no underexpansion (90.9% vs 98.5%).
- Although acute malapposition was observed in 28 pts, malapposition was not related to MACE at follow-up.

Kang et al. Circulation Cardiovasc Interv. 2011;4:562-9

Impact of underexpansion on ISR in patients treated with either two stents or a single stent cross-over

Two-Stent Techniques (n=114) One-stent Cross-over (n=289)

Kang et al. Circulation Cardiovasc Interv. 2011;4:562-9

MAIN-COMPARE Registry

- 975 pts with unprotected LMCA stenosis underwent elective stenting under IVUS (n=756) or angiographic (n=219) guidance and were followed for 3 years
- IVUS-guidance was significantly associated with reduced death (HR=0.31 overall and HR=0.27 in DES) as compared with angiography guidance
- However, the use of IVUS-guidance did not reduce the risk of myocardial infarction or target vessel revascularization.

Park et al. Circ Cardiovasc Intervent 2009;2:167-77

(Park et al. Circ Cardiovasc Intervent 2009;2:167-77)

ADAPT-DES – IVUS vs No-IVUS Cohort -

Assessment of Dual AntiPlatelet Therapy with Drug-Eluting Stents

Impact of Complexity of Procedure on MACE

Pre-intervention

Post-intervention (1 stent cross-over)

FFR of "Jailed" LCX

KNam et al. Korean Circ J 2011;41:304-7

43 LMCA bifurcation lesions with a pre-PCI LCX ostial DS<50% were treated by singlestent cross-over

100

80

60

 $MLA < 3.7 mm^2$

PPV 16%

Sensitivity 100%

Specificity 71%

Kang et al. Asan Medical Center, unpublished

78% showed a >10% reduction of MLA within LCX ostium after cross-over stenting

Kang et al. Circulation Cardiovasc Interv 2011;4:355-61

ICI201

Carina shift

Conclusions

- Use IVUS or FFR to assess LMCA severity
 - FFR <0.80
 - MLA <6mm² in Western patients
 - *MLA* <4.8*mm*² *in Asian patients*
- Perform pre-intervention IVUS from both the LAD and LCX to assess the extent of the atherosclerosis
- Perform post-intervention IVUS to optimize the implanted stent results

